Licht im Dunkel – Neutronen für Forschung, Medizin und Industrie

Prof. Dr. Winfried Petry

Wissenschaftlicher Direktor Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II) Heinz Maier-Leibnitz Zentrum (MLZ) Technische Universität München

Think big – Großgeräte in der Physik: 19.04.2013, Symposium der BAd

Neutronen sind wie Licht

\rightarrow neutral

- \rightarrow Neutronen ~ 50% der uns umgebenden Masse
- \rightarrow Als freies Neutron endliche Lebensdauer, 886 ±2 sec.
- → Magnetisches Moment
- → Neutronen haben Wellencharakter, $\lambda \approx 0,1 1000$ nm.
- \rightarrow Neutronen werden total reflektiert.
- \rightarrow Neutronen durchdringen jede Materie.
- \rightarrow Wechselwirkung ändert sich von Isotop zu Isotop.
- \rightarrow Neutronen induzieren Kernreaktionen.

Neutronen sind Materiewellen

States in the state of the state of the state

Beugung Interferenz Bragg Gleichung $n\lambda = 2d \sin\theta$

Experimentierhalle

Instrumente insgesamt

1 UCN

19 kalt

8 thermisch

2 heiß

1 schnell 1 Positronen

TUM **FZ-Jülich** HZ-Geesthacht **HZ-Berlin** Max Planck-Inst **Bundeswehr** Göttingen Darmstadt Dresden Köln Augsburg

Beteiligte Labore

Bayreuth

Neutronen, wozu ?

Forschung mit Neutronen gibt Antworten auf die großen Herausforderungen unserer Gesellschaft

- Energie (Speicherung, Transport, Transformation)
- Informationstechnologie
- Nanotechnologie und innovative Materialien
- Gesundheit
- Mobilität
- ---
- Neugier

- Energie

(Speicherung, Transport, Transformation)

- Informationstechnologie
- Nanotechnologie und innovative Materialien
- Gesundheit
- Mobilität
- ...
- Neugier

Kommerzielle Li-Ionen Batterie, Neutronen Tomographie in-operando

Kommerzielle 18650 Li-Ion Batterie, rekonstruiert aus Neutronen -Tomographie, verschiedene Farbtöne symbolisieren die Li-Konzentration.

Strukturänderung während Ladung/Entladung in Li-Ionen-Batterien

A. Senyshyn (FRM II), H. Ehrenberg (IFW, FZK), K. Nikolowski (IFW)

Chemische Wasserstoffspeicher, Reaktionswege

Magnesium Amide / Lithium Hydride Mischung: 3 Mg(NH₂)₂ + 8LiH \leftrightarrow 4Li₂NH + Mg₃N₂ +8H₂, 200°C

→ hohe reversible Speicherkapazität: 6.9 Massen % H

Reaktionsweg während H Aufnahme/Abgabe

Neutronen d iffraktion während Deuterium-Aufnahme/Abgabe Absorption: 220 C, verschiedene Deuterium Drücke bis zu 73 bar Desorption: 220 C

→ Phase identifiziert:

Zwischenphase : α -Li₂Mg(ND)₂, Li₂Mg₂(ND)₃, LiND₂

 α -Li₂Mg(ND)₂

F. Dolci, E. Weidner, R. Campesi, P. Moretto (EC, JRC, Petten); J. Hu (FZK); M. Hoelzel (FRM II)

Silizium

Hochspannungs-Gleichstrom Fernübertragung

Siemens AG

Wilfried Breuer, Siemens AG, Power Transmission and and Distribution

Innovatives Drei-Achsen-Spektrometer am FRM II

100 mal besser als die Konkurrenz Ermöglicht völlig neue Fragestellungen Wie funktioniert Supraleitung?

> Inosov et al., Nature Physics 6:178 - 181 2010 Keller, Buchner, Keimer MPI-Stuttgart

Supraleitung in Blei

Sprung in der Phononenlebensdauer Γ wegen Brechung der Cooper-Paare

→ Direkter Beweis der Elektron-Phonon-Wechselwirkung

Keller, Aynajian, Habicht, Boeri, Bose, Keimer, MPI Stuttgart, PRL 96,225501 (2006)

Phononen Lebensdauer

- → supraleitende Energielücke und Kohn-Anomalie sind gekoppelt
- → Erweiterung der BCS Theorie nötig

P. Aynajian, T. Keller, L. Boeri, S. Shapiro, K. Habicht, B. Keimer: www.sciencemag.org SCIENCE VOL 319 14 MARCH 2008

Eisen-basierte HTc Supraleiter:

Inelastische Neutronenstreuung an optimal dotiertem BaFe1.85Co0.15As2 , Tc= 25K)

- Energie

(Speicherung, Transport, Transformation)

- Informationstechnologie

- Nanotechnologie und innovative Materialien
- Gesundheit
- Mobilität
- ...
- Neugier

Skirmionen-Gitter in MnSi

Neue Form von magnetischer Ordnung auf mesoskopischer Skala Zukünftige Informationsspeicherung ?

S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neugebauer, R. Georgii, P. Böni: Skyrmion Lattice in a Chiral Magnet, Science 323 (2009), pp. 915-919

Magnetisches Phasendiagramm von MnSi.

- Energie (Speicherung, Transport, Transformation)
- Informationstechnologie
- Nanotechnologie und innovative Materialien
- Gesundheit
- Mobilität
- ...
- Neugier

Leistungsstarke Elektronik aus Metall-Matrix-Kompositen (MMC)

 \Rightarrow Delamination an der Wärmesenke von IGBTs

IGBT (= <u>Insulated Gate Bipolar Transistor</u>)

Matrix: AI, AISi7 Particles: Diamonds ~ 50µm Vol. content: 60 vol.%

- Energie (Speicherung, Transport, Transformation)
- Informationstechnologie
- Nanotechnologie und innovative Materialien

- Gesundheit

- Mobilität
- ...
- Neugier

Neutronen-Tomographie einer Rattenlunge in 3D

Schillinger (FRM II), Metzge (MW –TUM), Runck, Stahl (Uni-Klinik Freiburg)

Neutronentomographie einer Rattenlunge in 2D

Schillinger (FRM II), Metzge (MW – TUM), Runck, Stahl (Uni-Klinik Freiburg)

Überlebensrate bei künstlicher Beatmung

Marcello B.P. Amato, The New England Journal of Medicine, 338, 6, 347-54, 1998

Brüten von ¹⁸⁸Re für Radiopharmazeutika

Ir 188		lr 189	Ir 190	Ir 191	Ir 192	Ir 193	Ir 194	
41, 5* 7 155. 633. 47	5 h 2215: 78_	13,3 d , y 245, 70; 59 g.m	3.1h 1.2h	11,84 4,94 s 37,3	281a 1.4m 74.04 h(S4) 1 1.7 h(S4) 1 1.7 h	10,6 c 52,7 hg(00) a a 0.005 +7 a7-113	171d 19,15 h 6" F 22 1401 1328 138. 394.	
Os 187 1,6		Os 188 13,3	Os 18 β ⁻ , γ,	9 Os 190 2.12 MeV	Os 191 0,198 15,44	Os 192 6,11 41,0 17 568 758, 451 332 485 42.0	Os 193 30,0 h ^{f(-1,1} - ^y 139,460; 73g a 1540	
Re 2 - 12 ⁵ -	186 90.54 h	Re 187 62,60 5 · 10 ¹⁹ a §* 0,0026 no;; = 1,6+73	Bo 18	8 Re 189 24,3 h β ⁻	Re 190	Re 191 9,8 m	Re 192 16 s ^{β⁻-4} 7206-751 9	
W 1.58 m	185	W 186 28,6	W 187 23,8 h	7 W 188	W 189 11 m	W 190 30,0 m		
時間 12 13	5"2.4. 1(53)	037.8	2n,	2γ σ ^{10,3}	f ⁺ 2.5 y 258; 417; 550	р ^т 1.0 т 158; 162 0		

$$\stackrel{186}{\longrightarrow} W \xrightarrow[69d]{2n,2\gamma} \stackrel{188}{\longrightarrow} W \xrightarrow[69d]{\beta^-} \stackrel{188}{\longrightarrow} Re \xrightarrow[17h]{\beta^-,\gamma} \stackrel{188}{\longrightarrow} Os$$

Brachytherapie nach Ballondillatation einer Arterie

Re-188 Generator

 \rightarrow Klinikum Augsburg, Therapie einer Venenkontraktion

Klinikum

Augsburg

Szintigraphie von Tumoren mit

Produktion von Mo-99 am FRM II

- Produktion von Molybdän-99 am FRM II technisch möglich
- FRM II kann Hälfte des europäischen Bedarfs decken.
- Finanzieller Rahmen für den Aufbau: **5,4 Millionen Euro** in 5 Jahren
- Start der Produktion: Anfang 2014

Neutrontherapie, Metastasen an der Brustwand, Brustkrebs

Molls, Kneschaurek, Loeper, Klinikum rechts der Isar, FRM II

Strahlentherapie – Instrument MEDAPP am FRM II

Neutronentherapie am FRM und FRM II

Von 1984 bis 2000 ca. 700 Patienten behandelt, Juni 2007 bis Ende 1012: 124 Patienten am FRM II behandelt.

- Energie (Speicherung, Transport, Transformation)
- Informationstechnologie
- Nanotechnologie und innovative Materialien
- Gesundheit
- Mobilität
- ...
- Neugier

Vier-Zylinder-Motor

600 rpm Zeitauflösung 1 ms

Schillinger, Brunner, Calzada, FRM II

Modell Guss eines Zylinder-"Liners"

Verbundgussprobe (a) Schnittdarstellung mit Abmaßen (in mm) und verwendetem Polarkoordinatensystem, (b) Foto einer Verbundgussprobe mit applizierten DMS für das Bohrloch- und das Zerlegeverfahren

U. Wasmuth et al, CIRP Annals- Manufacturing Technology, 2008, 57/1, 579-582

In-situ Messung der inneren Spannungen während des Gussprozesses

U. Wasmuth et al, CIRP Annals- Manufacturing Technology, 2008, 57/1, 579-582

Aufbau innerer Spannung während Abkühlung

U. Wasmuth et al, CIRP Annals- Manufacturing Technology, 2008, 57/1, 579-582

- Energie (Speicherung, Transport, Transformation)
- Informationstechnologie
- Nanotechnologie und innovative Materialien
- Gesundheit
- Mobilität

- ...

- Neugier

Ultrakalte Neutronenquelle (im Bau)

Exzellenzcluster "Structure and Origin of the Universe", TUM

Versiegelte römische Vase/Amphorae, vermutlich leer

Neutronen-Tomographie macht Pflanzensamen sichtbar!

Atomei (1957) - Keim des Forschungscampus Garching

FRM 1 S Garant für weitere internationale Spitzenstellung