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Noise analysis, then and today 

Dr. Ulrich L. Rohde 
Introduction: 

Noise analysis of autonomous circuits (oscillators) was a dream since many years. The first and linear 
approach has to be credited to David Leeson, who took a linear low pass equivalent circuit and derived 
his frequently quoted linear type formula [1]. This formula requires data which really can only be gained 
after a post prior analysis. The values of the output power, the loaded Q, the large signal noise factor 
{frequently confused with noise figure, NF=10×log(noise factor)} and the flicker noise contribution are 
not known a priori.  A complete computation of these values is found in [2, pp 131-137]. The 
introduction of the nodal noise analysis in a proper way was published by Hillbrand and Russer [3]. The 
Lee-Hajimiri noise analysis is interesting but not very practical. It is quoted very often in the literature 
but its use is not practically shown. [2, pp 137-139, 4, 5, 6].   
If we combine the Leeson formula with the tuning diode contribution, the following equation allows us 
to calculate the noise of the oscillator completely [2, pp 129]. The VCO term was added by Rohde [2, pp 
131] and the flicker term was added by Scherer [7] 
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where  
 

L  (fm) = ratio of sideband power in a 1 Hz bandwidth at fm to total power in dB 
fm = frequency offset 
f0 = center frequency 
fc = flicker frequency 
QL = loaded Q of the tuned circuit 
Q0= unloaded Q of the tuned circuit 
m= (QL/Q0) 
F = noise factor 

kT = 4.1  10−21 at 300 K0 (room temperature) 
Psav = average power at oscillator output 

R = equivalent noise resistance of tuning diode (typically 50  - 10 k) 
Ko = oscillator voltage gain  

 
Kaertner’s paper [8] used a nice time domain approach and includes, probably for the first time, the 
noise correlation in oscillator design. At his time the now available harmonic balance method was not 
invented. A very good description is found in the works by Rizzoli [9-11]. While not easy to read and 
highly mathematical, Kaertner’s calculation produced very real results. 
 
Large signal noise analysis: 
The introduction of the “piece wise linear” harmonic balance (HB) method, which for the first time ever, 
was developed by Prof. Vittorio Rizzoli and team, was the perfect body to include the noise correlation 
method. The famous nonlinear time domain based circuit analysis program SPICE lacks a rigorous noise 
correlation analysis and the harmonic balance programs are a hybrid of linear (frequency) and nonlinear 
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(time domain) computations [12, 13]. Rowan Gilmore worked with me during our ‘Compact Software’ 
time. Both publications by Rizzoli and Gilmore were leading on the topic. 
 
My team at ‘Compact Software’ and the Rizzoli team were a bit struggling to validate the results and it 
was complicated to get reliable measured data and maintain accuracy and speed. The Compact Software 
approach and the Rizzoli team were always fighting with this topic. I remember telling users that short 
cuts used in some programs were getting them faster to the wrong answer. At the end, a very fast 
double precision multidimensional matrix inversion program that had to be developed was the solution. 
The use of FORTRAN gave the most stable results. This HB approach is also able to deal with hysteresis. 
 
The first and most challenging circuit analysis of a low noise Raytheon-developed amplifier circuit was 
published and the details of which can be found in [14 pp 376-379]. For the first time ever and in 
cooperation with Robert (Bob) Pucell (Raytheon) and Tony Pavio (TI), we demonstrated very accurate 
results using SPICE type data for GaAs FET’s. They were hard to come by. We ended up using a modified 
Materka model. [15-19]. Actual circuit was published in The Microwave Journal [20]. So far I have 
demonstrated that the noise-analysis can be done based solely on the available accurate SPICE 
parameters of GaAs-FET and its family members. 
 
But the really needed large signal circuit analysis was the one of the oscillator. To implement the proper 
FET [15-19] and BIP [20, 21, 22] models and its derivatives was quite a task. The internal noise modeling 
was based on the noise correlation matrix [2] and the results were published by W. Anzill, F.X. Kaertner, 
P. Russer, in  1992 [23]. Since 1987 the Microwave Harmonica program by Compact Software was 
already proven to be reliable [see 20]. The next step of course was to match the measured results of 
practical circuits. Hewlett Packard had the first and reliable phase noise system and Dieter Scherer was 
the lead engineer at the time to educate us all. For a systematic approach, even without a simulator, as 
shown in [24], it is useful to have large-signal S-parameters. They are defined in [2, pp 63]. Today the 
leading Phase Noise Analyzer is the Rohde and Schwarz Model – FSWP/8/26/50. 
 
As to the Large-Signal parameters of bipolar transistors, which at the time of Kaertner’s times had not 
been derived, they are best obtained from measurements. More about the topic is found in [24].  

 
Figure 1: Test fixture to measure large signal S-parameters 

The proper de-embedding procedure needed has been shown in [19]. It translates the external 
measurements to the actual chip. 
 
For the actual measurement a Network Analyzer is necessary with variable output power.  
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Figure 2: Rohde & Schwarz 3 GHz network analyzer to measure the large-signal S-parameters at 
different drive levels. 
 
Large signal operation of a transistor means not the customary low-noise application. The Large-signal 
operation makes the BJT behave differently than expected [18-22]. 
 

 
Figure 3: Measured large-signal S11 of the Infineon BFP520 
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Figure 4: Measured large-signal S12 of the Infineon BFP520 

 

 
Figure 5: Measured large-signal S21 of the Infineon BFP520 
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Figure 6: Measured large-signal S22 of the Infineon BFP520 

 
From Figures 4 and 6 it is clearly obvious that this is Large-Signal Operation [25]. 
 
So, after all this information I would like to analyze the circuit which was used by Kaertner as the basis of 
his brilliant paper [8, 23]. The values shown below are taken from his publication. 

 
Figure 7: Colpitts Oscillator analyzed by Kaertner 

 
The values of the components are R1=350Ω, R2=110kΩ, RL=500Ω, L1=10uH, L2=30nH, C1=10pF, C2=940pF, 
C3=2.7nF, C4=1.5nF, T=BFR35A 
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Kaertner made one simplification which in actual circuit theory is deadly; L2 was assumed to have 
infinite Q. For his approach, as the circuit will actually load the unloaded Q, this is permissible. With an 
infinite Q and with C2= 940 pF it will oscillate. Once a real Q like QL=100 is used and the value of C2 has 
to be reduced to a 100 pF and then all works well. The feedback has to be increased. It is also advisable 
to reduce C4 to 100pF as it is not possible to make a capacitor without parasitic inductance. The same 
applies to the 10uH inductor, which is probably resonant at the operating frequency, and 1uH seems to 
be a better choice. 
 
Kaertner published the calculated phase noise as shown in figure 7 of his paper [4]. He pointed out 
correctly that the flicker contribution was not included. 
 
In using the Compact Software “Microwave Harmonia” (referring to harmonic balance techniques), here 
is an adaption of his circuit. 
 

  

Figure 8: Circuit schematic of the Kaertner 300MHz Oscillator 

The simulation: now including the AF and KF values, provides results tracking Kaertner’s publication. 
 

 
Figure 9: Simulated Phase Noise of the Kaertner Oscillator (Fig 8) 

The influence of AF and KF is clearly seen at 1 kHz. Finally, here is the prediction of the output power 
and the harmonic contents. 
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Figure 10: Simulated Output Power of the Kaertner Circuit 

 
The output power is about 16dBm and the harmonic suppression is about 20dB. This indicates a good 
operating Q of the resonant circuit. 
 
All this tracks very well. 
Here are some additional thoughts regarding my paper which may be useful for clarification and of 
interest. 
Although Leeson’s phase-noise model provides a valuable insight into the oscillator design from 
engineering perspectives, it cannot explain some of the important phase noise phenomena. This is due 
to simplifying assumptions made about the linearity and time-invariant behavior of the system. When 
comparing the measured results of oscillators with the assumptions made in Leeson’s Equation, one 
frequently obtains a de facto noise figure in the vicinity of 20 to 30 dB and an operating Q that is 
different than the assumed loaded Q, therefore must be determined from measurement; diminishing 
the predictive power of the Leeson’s phase noise. 
Leeson’s model observes the asymptotic behavior of phase-noise at close-to carrier offsets, asserting 
that phase-noise goes to infinity with 1/f3 rate. This is obviously wrong as it implies an infinite output 
power for oscillator. For noisy oscillators it could also suggest that L(f) >0 dBc/Hz, this singularity arises 
from linearity assumption for oscillator operation around steady-state point. In fact, the linear model 
breaks down at close-to-carrier frequencies where the phase-noise power is strong [5]. Considering a 
nonlinear model for the oscillator in absence of flicker noise, these singularities can be resolved by 
expressing the phase noise in the form of a Lorentzian function [4] 
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 where a is a fitting parameter.  
Although Equation (1) models the spectrum and avoids any singularity at Δfm=0 while maintaining the 
same asymptotic behavior as illustrated in Figure 1; this is an after-the-fact approach, not a predictive 
one. From Equation (1), the total power of phase-noise from minus infinity to plus infinity is 1, this 
means that phase-noise doesn’t change the total power of the oscillator; it merely broadens its spectral 
peak. Attempting to match the Leeson calculated curve “A” (Figure 1), the measured curve requires 
totally different values than those assumed due to up-conversion and down-conversion of noise 
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components from harmonically related frequencies to around carrier frequency as depicted in (Figure 2) 
[5]. 

 
Figure 1: Close-In phase-noise behavior due to white noise sources. Leeson’s model predicts phase-noise 
monotonically increases by approaching the carrier whereas in reality it takes the form of a Lorentzian 
shape [4] 
Particularly, the effect of the low-frequency flicker noise components on close-in phase-noise is not well 
characterized in Leeson’s model. The model asserts that the phase-noise 1/f3 corner frequency is exactly 
equal to the amplifier’s flicker-noise corner frequency, ωc. However, measurements frequently show no 
such equality. This is because Leeson models the oscillator as a time-invariant system, whereas 
oscillators are in general cyclostationary (A cyclostationary process is a signal having statistical 
properties that vary cyclically with time) time-varying systems due to the presence of the periodic large-
signal oscillation. This issue has been addressed by several authors. Hajimiri has shown that the 
oscillator’s phase-noise 1/f3 corner frequency can be significantly lower than the device’s flicker corner 
frequency; provided that the oscillation signals at the output of the oscillator circuits is odd-symmetric 
[6]. 
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Figure 2: Conversion process from noise (Sn(ω)) to phase-noise (L(ω)). Noise components from 
harmonically-related frequencies are up/down-converted to around carrier phase noise, Leeson’s model 
fails to address this phenomenon [6]. 

 
Figure 3: Measurement of a 40GHz source where the spot noise is larger than zero 
Note: For large phase variations (>> 1 radian rms/rt Hz), SΦ (f) will be greater than 0 dB. For small phase 
variations (< 1 radian rms/rt Hz), SΦ (f) will be less than 0 dB. SΦ (f) is a very useful for analysis of the 
effects of phase noise on systems that have phase sensitive circuits, such as digital communications 
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links. This historical definition of phase noise is confusing when the phase variations exceed small values 
because it is possible to have phase noise values that are greater than 0 dB even though the power in 
the modulation sideband is not greater than the carrier power. 
 
Quantifying Phase Noise 
Due to the random nature of the instabilities, the phase deviation is represented by a spectral density 
distribution plot. The term spectral density describes the power distribution (mean square deviation) as 
a continuous function, expressed in units of energy within a given bandwidth. The short term instability 
is measured as low-level phase modulation of the carrier and is equivalent to phase modulation by a 
noise source. There are four different units used to quantify spectral density: 
S (f), L(f), S (f), and Sy(f). 
A measure of phase instability often used is SΦ (f), the spectral density of phase fluctuations, on a per 
Hertz basis. If we demodulate the phase modulated signal, using a phase detector, we obtain Vout as a 
function of phase fluctuations of the input signal. Measuring Vout on a spectrum analyzer gives ΔVrms(f) 
which is proportional to ΔΦrms(f)  

 
The term spectral density describes the energy distribution as a continuous function, expressed in units 
of phase variance (radians) per unit bandwidth. If we use 1 radian(rms)/rt Hz as the phase variance 
comparison, we can express SΦ(f) in terms of dB. 
For large phase variations (>> 1 radian rms/rt Hz), SΦ (f) will be greater than 0 dB. For small phase 
variations (< 1 radian rms/rt Hz), SΦ (f) will be less than 0 dB. 
SΦ (f) is a very useful for analysis of the effects of phase noise on systems that have phase sensitive 
circuits, such as digital communications links. 
L(f) is an indirect measure of noise energy easily related to the RF power spectrum observed on a 
spectrum analyzer. The historical definition is the ratio of the power in one phase modulation sideband 
per hertz, to the total signal power. L(f) is usually presented logarithmically as a plot of phase 
modulation sidebands in the frequency domain, expressed in dB relative to the carrier power per hertz 
of bandwidth [dBc/Hz]. 
This historical definition of phase noise is confusing when the phase variations exceed small values 
because it is possible to have phase noise values that are greater than 0 dB even though the power in 
the modulation sideband is not greater than the carrier power. 
IEEE STD 1139 has been changed to define L(f) as SΦ (f)/2 to eliminate the confusion. 
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Figure 4: Indication of the range of validity of phase noise measurements, not spectral density. 
The measured value above the solid line is invalid. 
 
Extended References: 
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14, No. 6, pp. 50-72, September/October 2013 
[2] U.L. Rohde, A.K. Poddar, and G. Boeck, “The Design of Modern Microwave Oscillators for Wireless 
Applications: Theory and Optimization”, Wiley, New York, 2005 
[3] http://www.keysight.com/upload/cmc_upload/All/PhaseNoise_webcast_19Jul12.pdf 
[4] http://mathworld.wolfram.com/LorentzianFunction.html 
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Summary: 
This brief history and summary paper provides some insight in the struggle to develop a general purpose 
non-linear CAD tool that predicts large-signal noise in amplifiers, frequency doublers and mixer circuits, 
correctly, including its validation. Many more examples are found in [2, 14]. 

As outlined there were many excellent contributors. Prof. Vittorio Rizzoli probably made the most 
contribution, and the effort for testing and validation of the Serenade Harmonica program that my team 
provides must not be underestimated. 

Later, a CAD independent mathematical time-domain calculation was developed, which, without 
immediately resorting to an expensive tool, can predict the noise performance of oscillators. [2, 23, 24] 
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